1,288 research outputs found

    CLIC Muon Sweeper Design

    Full text link
    There are several background sources which may affect the analysis of data and detector performans at the CLIC project. One of the important background source is halo muons, which are generated along the beam delivery system (BDS), for the detector performance. In order to reduce muon background, magnetized muon sweepers have been used as a shielding material that is already described in a previous study for CLIC [1]. The realistic muon sweeper has been designed with OPERA. The design parameters of muon sweeper have also been used to estimate muon background reduction with BDSIM Monte Carlo simulation code [2, 3].Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS15), Whistler, Canada, 2-6 November 2015, 7 pages, 6 figure

    The simultaneous and nearly-collinear K0K^{0} beams for experiment NA48

    Get PDF
    A system of simultaneous and nearly-collinear beams of long- and short-lived neutral kaons has been installed and extensively studied. These beams form an integral part of the NA48 experiment at the CERN SPS, which aims to study direct CP-violation. The beam splitting is achieved by a novel application of a bent silicon crystal. The principles and design of these beams, as well as their performance are described

    The simultaneous long- and short-lived neutral kaon beams for experiment NA48

    Get PDF
    Simultaneous, nearly-collinear beams of long- and short-lived neutral kaons are an essential feature of the precision CP-violation experiment NA48 *) at the SPS. The present report describes the design and performance of these beams in relation to the requirements of the experiment

    Successful new product development by optimizing development process effectiveness in highly regulated sectors: the case of the Spanish medical devices sector

    Get PDF
    Rapid development and commercialization of new products is of vital importance for small and medium sized enterprises (SME) in regulated sectors. Due to strict regulations, competitive advantage can hardly be achieved through the effectiveness of product concepts only. If an SME in a highly regulated sector wants to excell in new product development (NPD) performance, the company should focus on the flexibility, speed, and productivity of its NPD function: i.e. the development process effectiveness. Our main research goals are first to explore if SMEs should focus on their their development process effectiveness rather than on their product concept effectiveness to achieve high NPD performance; and second, to explore whether a shared pattern in the organization of the NPD function can be recognized to affect NPD performance positively. The medical devices sector in Spain is used as an example of a\ud highly regulated sector. A structured survey among 11 SMEs, of which 2 were studied also as in in-depth case studies, led to the following results. First of all, indeed the companies in the dataset which focused on the effectiveness of their development process, stood out in NPD performance. Further, the higher performing companies did have a number of commonalities in the organisation of their NPD function: 1) The majority of the higher performing firms had an NPD strategy characterized by a predominantly incremental project portfolio.\ud 2) a) Successful firms with an incremental project portfolio combined this with a functional team structure b) Successful firms with a radical project portfolio combined this with a heavyweight or autonomous team structure.\ud 3) A negative reciprocal relationship exists between formalization of the NPD processes and the climate of the NPD function, in that a formalized NPD process and an innovative climate do not seem to reinforce each other. Innovative climate combined with an informal NPD process does however contribute positively to NPD performance. This effect was stronger in combination with a radical project portfolio. The highest NPD performance was measured for companies focusing mainly on incremental innovation. It is argued that in highly regulated sectors, companies with an incremental product portfolio would benefit from employing a functional structure. Those companies who choose for a more radical project portfolio in highly regulated sectors should be aware\ud that they are likely to excell only in the longer term by focusing on strategic flexibility. In their NPD organization, they might be well advised to combine informal innovation processes with an innovative climate

    A facility for the test of large area muon chambers at high rates

    Get PDF
    Operation of large area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz/\scm. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate

    Strong suppression of nuclear-charge changing interactions for 18 TeV/ c In ions channeled through a bent Si crystal

    Get PDF
    Abstract We present experimental results giving evidence for the strong reduction—a factor of more than 20—of nuclear-charge changing interactions for 18 TeV In 49+ ions channeled through a silicon crystal bent to 7.5, 11.9 and 19.8 mrad. A very small fraction of the deflected ions suffer electromagnetic or nuclear interactions leading to proton loss while traversing the 60 mm long crystal, even though its thickness corresponds to about 0.13 nuclear interaction lengths for an amorphous material. By considering the deflected ions only, we show experimentally that the nuclear-charge pickup reaction believed to be induced by virtual photons is a short-range phenomenon

    A new measurement of direct CP violation in two pion decays of the neutral kaon

    Get PDF
    The NA48 experiment at CERN has performed a new measurement of direct CP violation, based on data taken in 1997 by simultaneously collecting K_L and K_S decays into pi0pi0 and pi+pi-. The result for the CP violating parameter Re(epsilon'/epsilon) is (18.5 +/- 4.5(stat)} +/- 5.8 (syst))x10^{-4}.Comment: 18 pages, 6 figure

    Measurement of the branching ratios of the decays Xi0 --> Sigma+ e- nubar and anti-Xi0 --> anti-Sigma+ e+ nu

    Full text link
    From 56 days of data taking in 2002, the NA48/1 experiment observed 6316 Xi0 --> Sigma+ e- nubar candidates (with the subsequent Sigma+ --> p pi0 decay) and 555 anti-Xi0 --> anti-Sigma+ e+ nu candidates with background contamination of 215+-44 and 136+-8 events, respectively. From these samples, the branching ratios BR(Xi0 --> Sigma+ e- nubar)= (2.51+-0.03stat+-0.09syst)E(-4) and BR(anti-Xi0 --> anti-Sigma+ e+ nu)= (2.55+-0.14stat+-0.10syst)E(-4) were measured allowing the determination of the CKM matrix element |Vus| = 0.209+0.023-0.028. Using the Particle Data Group average for |Vus| obtained in semileptonic kaon decays, we measured the ratio g1/f1 = 1.20+-0.05 of the axial-vector to vector form factors.Comment: 16 pages, 11 figures Submitted to Phys.Lett.

    Measurement of the Ratio Gamma(KL -> pi+ pi-)/Gamma(KL -> pi e nu) and Extraction of the CP Violation Parameter |eta+-|

    Full text link
    We present a measurement of the ratio of the decay rates Gamma(KL -> pi+ pi-)/Gamma(KL -> pi e nu), denoted as Gamma(K2pi)/Gamma(Ke3). The analysis is based on data taken during a dedicated run in 1999 by the NA48 experiment at the CERN SPS. Using a sample of 47000 K2pi and five million Ke3 decays, we find Gamma(K2pi)/Gamma(Ke3) = (4.835 +- 0.022(stat) +- 0.016(syst)) x 10^-3. From this we derive the branching ratio of the CP violating decay KL -> pi+ pi- and the CP violation parameter |eta+-|. Excluding the CP conserving direct photon emission component KL -> pi+ pi- gamma, we obtain the results BR(KL -> pi+ pi-) = (1.941 +- 0.019) x 10^-3 and |eta+-| = (2.223 +- 0.012) x 10^-3.Comment: 20 pages, 7 figures, accepted by Phys. Lett.
    corecore